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Flight Control Applications of £; Optimization®

Mark Spillman’ and D. Brett Ridgely*
Air Force Institute of Technology

Wright-Patterson AFB, Ohio

Abstract

The £, optimization method is used to handle tracking issues in the design of discrete
flight controllers for a SISO aircraft longitudinal control problem. The ¢; optimization
approach is discussed theoretically and on a broad conceptual level. Constraints are
developed to handle control deflection and rate limitations, overshoot and undershoot
limitations and steady-state error requirements. The effect of each constraint is eval-
uated with simulations of the aircraft model. A closed-loop model-matching design is
also presented which produces acceptable tracking results with a lower order controller.

Introduction

A great deal of research in optimal flight control design in recent years has focused
on Hy and H,, optimizationl. While both methods work well for specific classes of inputs,
neither methbd adequately handles “hard” magnitude and time domain constraints on the
system, such as control deflection limitations, control rate limitations and overshoot restric-
tions in the system response. The ¢; optimization methon, which minimizes the maximum
magnitude of a system’s output to an unknown but bounded magnitude input, can be used to
incorporate “hard” magnitude constraints on the system. Since this optimization method is
a time domain approach, it can also address time domain constraints on the system response.

Dahleh and Diaz-Bobillo? have done the most comprehensive work on ¢; optimization

to date. In their work, they pose the ¢; optimization problem as a linear programming
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problem and solve it exactly for one block systems. Three methods for finding approximate
solutions to multi-block problems are also presented. Dahleh and Diaz-Bobillo propose
several methods of incorporating control deflection limitations, control rate limitations and
overshoot; however, some implementation details are omitted, and few comparisons between
the different methods are shown. The purpose of this paper is to investigate and compare
different magnitude and time domain constraints that can be added to the £y optimization
problem to produce systems with good tracking characteristics. A one-block model matching
design is also investigated to see if a system with good tracking qualities can be obtained
with a lower order controller. MATLABT™ software written by Diaz-Bobillo® was modified

and used to conduct the research in this paper.

¢; Optimization

The ¢, optimization problem was first introduced by Vidyasagar4, but Dahleh and
)

Pearson® are responsible for its more general solution. The goal of this section is to explain
Dahleh and Pearson’s method of solution which involves posing the problem as a linear -
programming problem. To simplify the explanation, the introductory development considers
the case of one-block problems only. The changes necessary to find solutions to multi-block
problems are discussed thereafter.

The discrete system in Figure 1, where r(k) € IR" is an exogenous input sequence of
unknown but bounded magnitude and m(k) € IR” is the output sequence to be controlled,

represents the standard ¢; problem. If ® = Fj(P, K) is the closed-loop transfer function from

m to r, then the objective of £; optimization can be written as

19 = inf [ maxicic, Ty T | ¢ii(k) | ] (1)

11
K stabilizing K stabilizing

Several steps must be taken in order to pose this as a linear programming problem. First, the
nonlinear absolute value function in the norm calculation must be removed. This is accom-
plished by a standard change of variables used in linear programming. Let ® = &+ — &~

where ®* and @~ are sequences of px n matrices with positive entries. The norm calculation




can then be replaced by

33 (850 +6504) ) )

=1 k=0
which is equal to the norm if, for every (4, j, k), either ¢* or ¢~ is zero. Since ¢* or ¢~ must
be zero at the optimal solution, this substitution is valid.

Before searching for the variables ®* or ®~ which minimize the one-norm of ®, constraints
must be imposed to ensure that the resulting ® will be stable and realizable. These two
problems are handled with the Youla parameterizationG. Using this parameterization, @
can be expressed as ® = H — UQV where H, U and V are known, and Q is unknown (see
Maciejowski7 for expressions for H, U and V). For one block problems U and V are inner7,
and thus invertible. This means that @ can be solved for directly, @ = U™}(H — ®)V 1,
which makes it easy to see that @ will be stable if and only if the transfer function (H — ®)
cancels the unstable zeros of U and V. In other words, if the unstable zeros of U and V are
denoted as a; , then Q will be stable if and only if ®(a;) = H(a;), for 1 < i < N. Further, if

® is written as a function of A\, where A = 271,

&) = Y. B(k)N* (3)

1 ag a3 - &(0) H(ay)
1 ay a2 --- @(1) | H(a2)
A o) | = | “
1 apn a?\, : H(CLN)

Or Afeqs® = bgeqs which is linear in ©.

With the above modifications, the £; optimization problem becomes
inf > O%(k)+ (k)

subject to  Ajeas ( O+ (k) — o~ (k) ) = bfeas




which is a linear programming problem with an infinite number of variables and a finite
number of constraints. The corresponding dual problem has a finite number of variables and
an infinite number of constraints. However, if there are no unstable zeros of U and V on
the unit circle, at some large enough k, a¥ Will‘be small enough that only a finite number of
these constraints will be active?. Thus, the dual problem is finite dimensional, and an exact
solution can be found. Further, the existence of a solution to the dual problem guarantees the
existence of the same solution to the primal problem. In fact, the ¢; optimization problem
can be solved directly in the primal space by truncating the series in (5) at a large enough
value.

There are a few modifications that must be made to the above formulation for multi-
block problems. First of all, U and V may not be invertible. However, if the problem is
nonsingular, i.e., all the controls are penalized and no measurements are perfect, then a left-
inverse of U and a right-inverse of V will exist, which is all that is required. Additionally,
for multi-block problems, it is the left unstable zeros of U and the right unstable zeros of V
that must cancel with zeros of (H — ®).

Multi-block problems have an infinite number of variables as well as an infinite number
of constraints, and thus cannot be solved exactly. To counter this problem, Dahleh and
Diaz-Bobillo? proposed three ways to find approximate solutions. The first method, known
as the Finitely Many Variables (FMV) approach, constrains the polynomial solution ® to
a fixed length. The resulting compensator provides a sub-optimal but feasible solution to
the problem. The second method, known as the Finitely Many Fquations (FME) approach,
truncates the number of dual variables, which is the same as solving the primal problem with
a finite number of constraints. The solution to this problem is super-optimal and infeasible.
The final and most viable method is known as the Delay Augmentation (DA) approximation.
This method is generally considered the best method to use for multi-block problems since
it carries more information about the optimal solution than the other two approaches.

The DA approach embeds the multi-block problem into a larger one-block problem by

augmenting pure delays to U and V. The resulting one-block problem, which contains extra




degrees of freedom in @, can then be solved exactly. While the solution to this problem
is super-optimal and infeasible, it serves as an upper bound to the true optimal. To get a
feasible solution, the extra degrees of freedom are simply stripped out of Q. The resulting
solution is sub-optimal but provides a lower bound to the optimal solution. Thus, this
method produces both a feasible solution and bounds on the optimal solution.

In later sections, the standard ¢; linear programming problem in is augmented with
constraints on the maximum magnitude of the controlled output to an exogenous step input.

These additional constraints are posed using the vector £., norm,
lm2lleo = sup [ m(k) | (6)

Understanding ¢; Optimization

In order to answer the question of how best to use /; optimization, it is important
to first understand what #; optimization is trying to accomplish. The formal mathematical
definition given in the previous section is not important here; rather, a simple conceptual idea
of how the method works is sufficient. By definition, ¢; optimization attempts to minimize
the absolute sum of a system’s sampled pulse response. Conceptually, this optimization
method works by pushing down on the pulse response from all sides. In other words, both
peak-to-peak gains and long pulse responses are penalized since both tend to increase the
absolute sum.

Since the primary interest in this paper is how best to use ¢; optimization for tracking
problems, it is instructive to examine the unit pulse and step responses of a simple discrete

system. Consider the continuous system,

H(s)=8i1=[“11 H] (7)

which discretized at 1/3 Hz using a Zero Order Hold (ZOH) is equivalent to

H(z) = [ 0.05 | 0.95 ]

1 0 (8)

The sampled unit pulse response of this system is shown in Figure 2. The one-norm of this

system can be calculated by inspection. The total sum of samples 1 — 4 in Figure 2 appears




to be approximately 1. Indeed, the one-norm for this system is 1. The unit step response of
the system in Equation 8 is also shown in Figure 2. Notice the distinct relationship between
the unit pulse response and the unit step response. If r is the sampled unit step response
and A is the sampled unit pulse response, then
k

r(k) = ;h(j) for k=1, 2, ... 9)
This relationship implies that the faster the pulse response decays to zero, the quicker the
step response reaches its steady-state value. Since ¢; optimization penalizes long pulse
responses, it logically also penalizes slow unit step responses. This fact and the general
relationship between the unit pulse and unit step responses are particularly important in

using £; optimization for tracking problems.

Design Problem

Throughout the rest of this paper, a Single Input Single Output (SISO) longitudinal
model of the AFTT F-16 is used to illustrate various tracking design issues. This particular
design example has a large frequency spread in the system dynamics (fast actuator dynamics
and slow phugoid modes) which makes for a rather challenging £; optimization problem. The
fast dynamics in the system force a fast discretization period to be chosen, while the slow
dynamics ensure the system’s pulse response will decay very slowly. These two factors lead
to a large number of variables required to accurately described the system’s pulse response.

The tracking problem is to accurately command a 1g (always from trim) normal acceler-
ation of the aircraft. The stabilator is the only control surface considered in the model, and
it is limited to £25 degrees deflection angle and 460 degrees/sec deflection rate. A linear
model of the aircraft is given in the Appendix.

All simulations in this paper are done with sampled-data systems, i.e., discrete controllers
with continuous system models. One g normal acceleration step inputs (from trim), applied

one second after simulations are started, are used to evaluate tracking performance.




Sensitivity Minimization

The goal of most tracking problems is to minimize the error between the commanded
input and the system output. This type of problem can be posed as a sensitivity mini-
mization problem, such as the one depicted in Figure 3. For the AFTI F-16 problem, the
exogenous input, 7, is an unknown commanded normal acceleration input with maximum
magnitude less than or equal to one, and the controlled output, m, is the weighted error
between the commanded acceleration and the actual aircraft acceleration. K is the unknown
compensator, and G is the unweighted plant, described in the last section.

W, is a weighting which can be used to minimize the error to a select frequency range
of command signals. Choosing an appropriate W,, however, is often a difficult task. For
this reason, W, is set to 1 in this paper and alternative methods are explored to replace the
frequency weighting.

An /£, optimization was performed on the system in Figure 3. Since a sensitivity problem
places no penalty on control usage, a small penalty, 4 = 1 x 107°, was added to ensure
the left inverse of U exists. The optimal closed-loop system has a one-norm of 2.07 and the
controller is 4" order. The system response to a 1g step in normal acceleration is shown in
Figure 4. The “jags” in the response are a product of the sampled-data simulation. As the
sample rate increases the “jags” become less apparent.

Notice that the step response is extremely fast. This is mainly due to the fact that there
was only a small penalty placed on control usage. However, as discussed in the previous
section, unconstrained ¢; optimization tends to produce very quick step responses. Plots
of control usage and rate of control usage are also shown in Figure 4. The control usage
does not violate the maximum deflection limits, but it is quite large for only a 1g change in
normal acceleration. Since the system is linear, it is easy to see that the maximum deflection
limit would be violated for a commanded 2g change in normal acceleration. The control rate
violates the maximum allowable rate limitation, even for a very small command.

The controller found above would be undesirable for two reasons: first, the system tracks

with a steady-state error; second, the level of performance shown in Figure 4 is unattainable




by the AFTI F-16 due to limitations in the stabilator rate of deflection. Before discussing
how to handle these problems, it is important to discuss some objectives the tracking solution
should achieve. The following list represents some typical factors which may be important:
i) minimum error to low frequency commands; ii) no violations of control defection and rate
limitations; iii) zero steady-state error to low frequency commands; iv) minimum overshoot
and undershoot; v) the quickest response possible given the above.

Item i) indicates that sensitivity minimization is the proper objective function for ¢
optimization, but items ii)-iv) indicate that it must be done with certain constraints. Item
v) is inherently built into £; optimization for most problems. Methods of incorporating items
ii-iv) without using sensitivity frequency weights are explored in the sequel. In general, the
same problems are encountered in a weighted sensitivity design. The next section tackles
item ii). It covers three different approaches for adding control deflection and rate constraints

to the error minimization problem.

Control Deflection and Rate Limitations

The previous section was concerned with solving the one-block problem

inf  ||S| (10)

Kstabilizing

where S is the sensitivity function. This section will first examine the general two-block

problem

S

W.KS (11)

inf
K stabilizing

1
where W, is a weighting on the control usage. The added block in (11) can be used to ensure
that control deflection or rate limitations are not violated.

Since the control rate limitations were violated in the last section, only rate constraints
are added in this section. It turns out that once the control rate is properly constrained for
the AFTI F-16, the control deflection limitations are no;c a problem. The ideas presented

below, however, easily extend to penalizing control deflections alone or to both control rates

and deflections.




In order to change the second block of (11) to a penalty on control rate instead of control
usage, an appropriate weight must be chosen for W,. Clearly the weighting must be chosen
so that it effectively takes the derivative of the control signal. This problem is best handled

directly in the z-domain, with

WC(Z) = T~ (12)

where 7' is the sample period. This weighting function, known as the backward Euler trans-
formation, calculates a finite different gradient between discrete pulses. Since the weighting
is in the 2-domain, the continuous system must be discretized before this weight can be
augmented to the problem.

The first approach to solving the rate-constrained tracking problem is to multiply each
block in the two block problem by a desired level of performance. For example, if the one-

norm of the first block is desired to be less than v and the maximum control deflection rate

is Uy, ..., then the problem becomes
in{ s 13
Ketablizing | gA—W.KS |, (13)

If the resulting one-norm of this system is less than 1, then both levels of performance
are achieved. This follows from the previous assumption that the maximum magnitude of
the exogenous input is less than or equal to one. If the goal is to find a solution which has
the minimum achievable v without violating the maximum control rate, this is not the best
approach because (13) would have to be solved iteratively for v until the resulting system
one-norm is exactly one.

A better approach is to solve the following problem

151l

m
K stabilizing

subject to  ||W.KS|:1 < U, (14)

max

In (13), the maximum absolute row sum had to be less than one to ensure the one norm
of the entire system was also less than one. In (14) the individual row sums are separated,

with one being minimized while the other is constrained.

9




Equation (14) was solved for the AFTI F-16 with control rate limitations of 200 deg/sec,
100 deg/sec, and 60 deg/sec. A plot of the system unit step response for all three constraint
levels is shown in Figure 5. The slowest response with the largest steady-state error corre-
sponds to the actual stabilator deflection rate limitation of 60 deg/sec. The responses to the
other two constraint levels are shown for comparison. This type of plot can also be used for
design purposes since it is easy for the designer to see how much performance can be gained
if faster control actuators are obtained. Plots of the control deflections and rates are shown
in Figure 5. Notice the control rates are well below their respective ¢; constraints for a unit
step input.

The one-norm of the objective and the compensator orders are shown in Table 1 for each
constraint level. The order of the ¢; optimal compensators is directly related to the support
length of the pulse response, i.e., the number of time steps it takes the pulse response to
decay to zero. Since the support length of the pulse response is related to the time it takes
the step response to reach steady-state, it is easy to see why the controllers found using the
above approach have such high orders.

The previous two approaches imposed £; constraints on the control rate. This means that
the constraint limitation imposed will not be exceeded for any input into the system bounded
in magnitude by one. Another less conservative option is to ensure that the constraint is not
exceeded for a single class of input like the step command. Unlike the #; constraints, these
lo, types of constraints can only be used on a finite horizon. In other words, they can only
be imposed over the support length of the solution. In many cases, however, imposing these
constraints over the first few time steps is sufficient.

To understand how a constraint on the step response of the system can be imposed in
/; optimization, recall the relationship in (9) between the unit pulse and unit step response.
The step response at any particular time step is nothing more than the sum of the pulse
response at that time step plus all previous time steps. Therefore, in terms of the pulse

response at each time step, these constraints can be imposed with very simple Toeplitz

10




matrices, with ones below the main diagonal and zeros above,

1o 071 (0 1

1 0 (1) <1y (15)
: .. .0 - 1 Tmaz

11 1 1][&Ww) 1

Notice that these constraints can easily be augmented to the constraints in (4).

The new problem with the augmented step input constraints becomes

inf Sl

Kstabilizing

subject to  ||WKSwilloo < U, (16)

where wy is a unit step. A plot of the AFTI F-16 normal acceleration step response for
control rate constraint levels of 200 deg/sec, 100 deg/sec and 60 deg/sec is shown in Figure
6. Again, the slowest response with the largest steady-state error corresponds to a constraint
of 60 deg/sec. Notice that the step responses to this type of constraint are much quicker and
have less steady-state error than the ¢; constraints. Control deflections and control rates are
also shown in Figure 6. Notice that now the rates appear to hit the constraint limits, except
in the 200 deg/sec case. This is due, however, to the finite differencing used on the rates. In
each case, the rate constraints are active.

The one-norm of the objective and the compensator orders are shown in Table 2 for
each constraint level. With this approach, quicker settling times also lead to lower order
controllers. While all the step responses in this section meet some constraint level on the
control rate, none of them has zero steady-state error. This issue is addressed in the next

section.

Steady-State Error and Time-Varying Exponential Weights

Near zero steady-state error to a step input can be enforced by using a weighting on
sensitivity. This typically cause problems with control rate usage and overshoot, which then
need to be addressed. Thus, no weight will be added to the sensitivity and zero steady-state

error to a step input will be enforced by adding an equality constraint to the #; optimization

11




problem. Recall from (9) that the final value of the step response is simply the summation
of the unit pulse response over its entire support length. Therefore, zero steady-state error
to a unit step input is guaranteed if the sum of the sampled unit pulse response equals zero.
This is not an absolute summation like the norm calculation; it is simply a summation of

the pulse response at each time step. The added equality constraint takes the form

1] My (17)
This constraint was added to the problem presented in (16), with the control rate constraint
equal to 60 deg/sec. The resulting solution has an objective one-norm of 3.00 and the
compensator is 44" order. The system response to a 1g normal acceleration step input is
shown in Figure 7 along with the control rate. Clearly, zero steady-state error is achieved, but
the limit on control rate is not met at the nearly discontinuous jump just after two seconds.
Notice that the response in Figure 7 is exactly the same as its counterpart in Figure 6 up
until this jump. This happened because the steady-state error equality constraint was not
imposed until the very last time step in the support length. In this system, imposing the
constraint any earlier results in a larger one-norm, which the optimization rejects. This
problem can be overcome with time-varying exponential weights on the norm cdlculation.
Consider multiplying each sampled pulse response by a*?, where k is the sample index, T
is the sample period and a > 1. Since this weight gets larger as k gets larger, it effectively
penalizes late errors over early ones.

The system above was rerun with a time-varying exponential weight added to the norm
calculation. With @ = 1.1, the objective one-norm was 3.59 and the controller was 26" order.
A plot of the system response to a step input is shown in Figure 8. Adding the exponential
weights increased the one-norm as expected. The weighting also decreased the settling time
and thus the controller order. The step response at this point now meets all the criteria

established, except the overshoot issue. This problem is discussed in the next section.
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Overshoot and Undershoot Limitations

Problems with excessive overshoot and undershoot in the step response can be han-
dled in exactly the same manner as excessive control deflections and rate violations. To
demonstrate this concept, a very small reduction is done on the overshoot for the step re-
sponse shown in Figure 8. Theoretically, the overshoot can be reduced to any desired level
at the expense of a slower response. However, it was extremely difficult to find a solution for
the problem presented with the current ¢; optimization software. The multi-block problem
contains so many constraints and delays that calculation attempts alone are extremely ex-
pensive in terms of computer time. Further, the linear programming routine in the software
has difficulty solving very large systems of equations, possibly due to scaling problems. The
system response in Figure 8 has an overshoot of about 80%. An /., type constraint on the
overshoot was added to the problem to ensure that the overshoot would be less than 70%
to a step input. The resulting solution had an objective one-norm of 3.40 and the controller
was 28" order. A plot of the step response with the added constraint is shown in Figure
9. Figure 10 shows a Bode plot of the controller. Note the high gain at low frequency to
achieve tracking, as well as the lag-lead behavior needed to keep the control usage down and
respond quickly.

This step response is still less than ideal; however, all the tools to shape and constrain
the response are now available. As the £; optimization software becomes more reliable and
efficient, a designer should be able to use all the techniques presented up to this point to
find a compensator which meets all of his or her tracking requirements. Unfortunately, this
compensator may be extremely high order and therefore impractical to use. It is important
to note that the designs shown up to this point are not intended to represent the best ones
possible. Rather, they are shown to clearly illustrate the capabilities of ¢; optimization.
The next section on model matching demonstrates one way to use ¢; optimization and
still produce controllers at or about the order of the original discrete system. Some of the
problems encountered in this final design will be handled with alternatives to the methods

shown up to this point.




Model Matching

One way to counter order inflation in 4 optimization is to solve a one-block prob-
lem instead. Since these problems can be solved exactly, without delay augmentation, the
resulting controllers tend to be much smaller (usually about the order of the unweighted
plant). An added benefit to using one-block systems is that they can be solved much faster
and more reliably than multi-block systems with the current £; optimization software.

In many cases, however, the constraints discussed in the previous sections can not be
imposed with one-block systems. Therefore, a one block system must be chosen that incor-
porates as many of the design criteria required for good tracking as possible. One way to
accomplish this objective is to model match the design problem to a system which has the
desired tracking characteristics.

A model-matching design for the SISO AFTI F-16 problem that has been discussed
throughout this paper is shown in Figure 11. A small penalty on control usage, similar
to the one discussed earlier, was added to the system to make the resulting ¢; problem
nonsingular. In Figure 11, H is the ideal closed-loop model given in continuous time by
H(s) =4/(s+4). This closed-loop model was chosen because its step response is relatively
quick, has no overshoot, and no steady-state error.

The one-norm of the solution to this design problem is 0.37 and the compensator is 5%
order. A plot of the AFTI F-16 step response to a commanded 1g normal acceleration
change is shown in Figure 12, along with the response of the ideal model. The step response
of the solution is approximately 0.37 ¢’s larger than the step response of the ideal model
at steady-state. This is due to the fact that /; optimization penalizes the maximum error
and thus does not care about steady-state error in this set-up. To make the system response
match the ideal model’s response, the commanded normal acceleration has to be multiplied

by a gain. This gain is the reciprocal of the DC gain of the discrete closed-loop transfer

function,

K(2)G(z)

L) = TR 60

(18)




For this problem, the gain equals 0.73.

Notice that with this particular approach there is no direct way to ensure the ébove
solution will not violate control deflection and rate limitations. In this problem, the control
rate limits were violated in the first few time steps. However, the closed-loop system still

performs well if the step input is first passed through a continuous prefilter equal to

F(s)=- iom (19)

and a rate limiter is added to the control signal. With the added prefilter, the system sees
a smooth continuous approximation of a step input, rather than a discontinuous step input.
The new input is actually a more realistic representation of a pilot command.

The system was tested with the prefilter, gain adjustments on the input, and a control
rate limiter set at 60 deg/sec. The response is shown in Figure 13. This response has no
overshoot, no steady-state error and was achieved with a 5% order controller and a small gain
on the input. A Bode plot of the resulting controller is shown in Figure 14. This controller
does not insert high gain at low frequency, since zero steady-state error is not enforced by
the controller, but rather by the command gain. This controller also has a lag-lead structure,
as in the constrained sensitivity minimization case. The Vector Gain Margins (VGM) and

Vector Phase Margins (VPM) 8 of this system are
—11.4 dB <VGM <10.4 dB, VPM = +42.9°

These margins are very high because of a “good” match to an ideal model with a “good”

loop shape.

Conclusions

This paper presented several methods of using ¢ optimization to solve tracking
problems. Specifically, constraints that could be added to the standard ¢, problem to handle
control deflection and rate limitations, zero steady-state error requirements and overshoot

limitations were discussed. While these constraints theoretically allow the control designer

to tailor a system’s time response, they tend to lead to multi-block problems and thus, high
15
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order controllers. These highly constrained multi-block problems also tend to be computa-
tionally expensive and difficult to solve with the current solution techniques. If the control
designer can restrict his/her design to a one-block problem, however, controller orders at
or near the order of the weighted plant are possible. This due to the fact the one-block 4y
optimization problems can be solved exactly in this case without Delay Augmentation. The
utility of a doing a one-block £; optimization design was demonstrated in this paper with a

simple model-matching problem.
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Appendix

The aircraft design model used in this paper consists of an actuator servo, G, and
the linearized longitudinal equations of motion for the aircraft, G,, referred to as the core
plant. The state-space representation of the continuous system is found by concatenating
the two components.

The four states in the longitudinal model are forward speed (u in ft/sec), angle of attack
(o in radians), pitch angle (# in radians), and pitch rate (¢ in radians/sec). The input to
G) is the stabilator deflection (8. in radians) and the output is the normal acceleration (n,

in ¢'s). G, is given by

i —1.485¢—2  3.738e+1 —3.220e+1 —1.794¢+11 [ 2.140¢ — 3
é ~8.000e —5 —1.491e+0 —1.300e—3 9.960e—1 | | a L | —1880e-1
6 0.000e+0  0.000e+0 0.000e+0 1.000e+0 | | 6 0.000e + 0
g ~3.600e—4  9.753¢+0  2.900e—4 —1.904e+1 | | g —1.904e + 1
.
n, = | 1.500e—3 3.526de+1 2.720e—2 —3.340¢— 1 ] 3‘ + [ —4.366e+0 | 6,
q |

The input to G, is the commanded stabilator deflection (éc. in radians) and the output is

the stabilator deflection. G, is given by

iy = [—2.oooe+1]xa+[2.000e+1]5ec

5, = [ 1.000e + 0 ]xa+ [ 0.000¢ + 0 ]5ec

The discrete aircraft plant, G, equals G,G, discretized at 30Hz using a ZOH.
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Fig. 3 /; sensitivity block diagram
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Table 1 Comparison of different ¢; constraints on control rate

constraint one-norm controller order

200 deg/sec 2.63 35
100 deg/sec 2.88 38
60 deg/sec 3.17 43
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Table 2 Comparison of different /., constraints on control rate

constraint one-norm controller order

200 deg/sec 2.16 9
100 deg/sec 2.28 13
60 deg/sec 2.43 19
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